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Summary Forecasts of inflow into major reservoirs of the Brazilian hydroelectric power
system are needed for the operational planning over periods ranging from a few hours to
several months ahead. Medium-range forecasts of the order of a few days to two weeks
have usually been obtained by simple ARMA-type models, which do not utilize information
on observed or forecast precipitation, nor streamflow observations from upstream gauging
stations. Recently, several different hydrological models have been tested to assess the
potential improvements in forecasts that could be obtained by using observed and fore-
cast precipitation as additional inputs. We present results from the use of a large-scale
hydrological model applied to part of the Paranaı́ba river basin between Itumbiara and
São Simão power plants (75,000 km2) using precipitation forecasts from the regional Eta
model run by the Brazilian Center for Weather Prediction (CPTEC). Results were compared
with those from the currently-used ARMA model and it is shown that forecast errors can be
reduced considerably, during both wet and dry seasons. Further reductions in prediction
errors may be anticipated from improved rainfall forecasts and of data quality used by
the hydrological model.
ª 2007 Elsevier B.V. All rights reserved.

Introduction

The Brazilian power distribution system is largely based on
hydropower production and is interconnected over most of
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the country, which is very extensive. Energy demands not
met by hydropower are met by thermoelectric plants, but
at higher costs. Operation of the whole system of 103 major
hydropower plants and 37 thermal plants is planned to min-
imize the use of thermal plants. The whole system is opti-
mized by a chain of models: one for long-range
operational planning (5 years), another for seasonal opera-
tional planning (12 months), another for monthly opera-
tional planning, and finally a model for making operational
decisions in the coming week. Forecasts of inflows to all res-
ervoirs are used with all planning horizons, and forecast er-
rors influence decision making, leading to sub-optimal
operation when water is released unnecessarily from reser-
voirs, or when thermal power plants are activated need-
lessly. Currently-used forecasting models do not include
any information on weather or climate forecasts, but are
based on Periodic Auto-Regressive (PAR), or Auto-Regres-
sive Moving Average (ARMA) models (Maceira and Damázio,
2005).

Planning and optimization of the country’s power system
is made by the Operador Nacional do Sistema Elétrico (ONS
– National Electric System Operator), which recently initi-
ated efforts to improve inflow forecasts by testing and com-
paring several streamflow-forecasting models which make
use of observed and predicted precipitation as input vari-
ables. As a first step, medium-range forecasts over coming
10-day periods were addressed.

Quantitative Precipitation Forecasts (QPFs) are highly
uncertain and are still not widely used as input to opera-
tional flood-forecasting or streamflow-forecasting models
for large catchments. However, an increasing number of re-
sults suggest that progress is being achieved towards bring-
ing QPFs to the stage of operational usefulness for
hydrological applications (Hollingsworth, 2003; Collier and
Krzysztofowicz, 2000; Damrath et al., 2000; Golding,
2000; Mao et al., 2000; McBride and Ebert, 2000; Mullen
and Buizza, 2001), while other authors highlight the limita-
tions of these forecasts in the case of extreme events (Men-
eguzzo et al., 2004; Bartholmes and Todini, 2005).

The use of QPFs obtained by numerical weather prediction
models (NWPs) as input data to run hydrological rainfall–run-
off models, thereby obtaining extended streamflow fore-
casts, has been explored by several authors (Yu et al.,
1999; Ibbitt et al., 2000; Anderson et al., 2002; Jasper
et al., 2002; Koussis et al., 2003; Habets et al., 2004; Collis-
chonn et al., 2005) who in general concluded that QPFs were
useful, although their usefulness was limited by their great
uncertainty. There have been recent attempts to consider
the uncertainty in forecasts, using ensemble rainfall fore-
casts (Bartholmes and Todini, 2005; Goweleeuw et al.,
2005) and to combine the inherent uncertainty of hydrologi-
cal models with ensemble forecasts (Pappenberger et al.,
2005). Most of these results are from work that is still at
the research stage, since operational-forecasting systems
still rely more on radar estimates and telemetry of measured
rainfall or short-range nowcasting (Moore et al., 2005). Nev-
ertheless, QPFs are gradually being introduced in operational
streamflow-forecasting systems in an attempt to extend the
range of forecasts, but the extended streamflow forecasts
that are obtained serve basically as early warning indicators,
because of high uncertainty of QPFs (Bremicker et al., 2006;
Moore et al., 2005).

In some cases it is not necessary to have very precise
forecasts, since relatively rough estimates can improve
the operation of hydraulic structures, or can yield estimates
of the risk that rivers will exceed specified discharge thresh-
olds (Rabuffetti and Barbero, 2005). This is the case for
forecasts of inflows to reservoirs in the medium range,
where it is important to know water volumes in advance,
while errors in flow peak magnitude and timing are less
important than for flood forecasting. The present work de-
scribes the use of QPFs as input to a large-scale hydrological
model for streamflow forecasts in a sub-basin of the Para-
naı́ba river in Brazil. Streamflow forecasts were obtained
for ranges of 1–10 days in daily time-steps and results were
compared with forecasts obtained by the auto-regressive
models at present used by ONS to manage all 103 reservoirs
in the system when making decisions concerning power
generation.

The MGB-IPH hydrological model

Many hydrological models can be used to make streamflow
forecasts based on predicted rainfall, and the comparative
study developed in Brazil by ONS also included lumped rain-
fall–runoff models, more complex distributed hydrological
models, and black-box models based on neural networks.

The question whether a distributed rainfall–runoff mod-
el performs better than simpler models has been posed
repeatedly in the past. It has been argued that distributed
models would perform better where distributed input data
were available, such as rainfall estimated by radar. But a re-
cent study – the Distributed Model Intercomparison Project
– showed that lumped models performed comparatively
well even using radar rainfall data, although in one basin
with elongated shape (Blue River), distributed models out-
performed lumped models (Reed et al., 2004). Distributed
models also appear to perform better when uncertainties
in input data and parameter values are considered (Carpen-
ter and Georgakakos, 2006). It can also be argued that dis-
tributed or semi-distributed models should be used in large
basins where spatial variability in rainfall and runoff gener-
ation processes may play a larger role, and the results pre-
sented in this paper were all obtained using the distributed
large-scale hydrological model MGH-IPH (Collischonn et al.,
2007; Collischonn and Tucci, 2001).

This is a large-scale distributed hydrological model
developed for use in large South American basins, where
densities of hydrological instrument networks are relatively
low and records are commonly short. Using the classification
proposed by Beven (2001), the model can be classified as a
hydrological response unit model. It uses input data derived
from Geographical Information Systems giving information
on basin characteristics such as land use, topography, vege-
tation cover and soil types, which guide the calibration of
parameter values. The MGB-IPH model was developed from
the LARSIM (Bremicker, 1998) and VIC (Liang et al., 1994;
Nijssem et al., 1997) models, with some changes in the
evapotranspiration, percolation and streamflow propaga-
tion modules. It has modules for calculating the soil water
budget; evapotranspiration; flow propagation within a cell,
and flow routing through the drainage network. The drain-
age basin is divided into elements of area – normally on a
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square grid of 10 · 10 km – connected by channels, with
vegetation and land use within each element categorized
into one or more classes, the number of vegetation and
land-use types being at the choice of the user. The Grouped
Response Unit (GRU) (Kouwen et al., 1993) approach is used
for hydrological classification of all areas with a similar
combination of soil and land cover without consideration
of their exact locality within the grid (or cell). A cell con-
tains a limited number of distinct GRUs. Soil water budget
is computed for each GRU, and runoff generated from the
different GRUs in the cell is then summed and routed
through the river network. This approach has been used in
other large-scale hydrological models, such as VIC (Wood
et al., 1992; Liang et al., 1994; Nijssem et al., 1997) and
WATFLOOD (Kouwen and Mousavi, 2002; Soulis et al., 2004).

The soil water balance is computed independently for
each GRU of each cell, using components describing canopy
interception, evapotranspiration, infiltration, surface run-
off, sub-surface flow, baseflow and soil water storage. Rain-
fall values are interpolated spatially and at each time step
to give an estimate at the center of each grid cell using in-
verse-distance-squared interpolation. Flow generated with-
in each cell is routed to the stream network using three
linear reservoirs (baseflow, sub-surface flow and surface
flow). Streamflow is propagated through the river network
using the Muskingum–Cunge method. A more comprehen-
sive description of the model, including results from a
proxy-basin test, is given by Collischonn et al. (2007) and
further applications are presented by Allasia et al. (2006),
Collischonn et al. (2005) and Tucci et al. (2003).

Hydrological model updating

Hydrological models can be operated in simulation mode
and in adaptive mode. In simulation mode the model output
is calculated from previous model inputs, in particular rain-
fall. In adaptive mode, model output is calculated not only
from previous model inputs but also from observations of
basin streamflow which are used to update the model be-
fore each new forecast is issued. Real-time forecasting re-
quires a model operating in adaptive mode (Moore et al.,
2005). This is because there are inadequacies of model
structure and uncertainties in parameter values and initial
conditions (Wagener et al., 2004). Where no updating pro-
cedure is applied relatively large errors occur, even for
forecasts with very short lead-times.

Model updating through assimilation of new data can be
classified according to the variables that are modified:
whether input variables, model states, model parameters
or output variables (WMO, 1992; Madsen and Skotner,
2005). The most widely-used updating procedures update
the state variables or the output variables. A very common
approach to model updating focuses on the prediction of
future model errors, based on past model errors. Toth
et al. (1999), for instance, used ARMA models to predict
forecasting errors of a deterministic rainfall–runoff model,
and Goswani et al. (2005) assessed the performance of eight
real-time updating procedures, based mostly on error pre-
diction. The advantage of this approach is that it can be eas-
ily applied to complex models such as full hydrodynamic
flood propagation models (Madsen and Skotner, 2005).

Updating of state variables can be based on observed
errors in river flow or stage, and can use empirical methods
or more formal Kalman filtering (Moore et al., 2005; Roman-
owicz et al., 2006). For more complex distributed and non-
linear models, Kalman filtering may lead to highly complex
computations while results are not necessarily better that
those obtained by simpler empirical schemes (Moore
et al., 2005; O’Connell and Clarke, 1981). The empirical
updating procedure used in the present work was designed
to make use of data from several stream gauging points dis-
tributed throughout the river basin, both on the main chan-
nel and on its tributaries, and which could be integrated
into the structure of the MGB-IPH model. The first version
of this updating procedure was described in Collischonn
et al. (2005), for a smaller basin with only two gauging sites.
The updating method used in the present work was based on
continuous comparison between observed and calculated
flows during a warming up or filtering period of 6–18
months, prior to the time of forecast initiation. It can use
information from several gauging points along the basin
and acts on two state variables: river flow and groundwater
flow (or slow response reservoir storage).

For each gauging station p where observed streamflow is
available, an updating correction factor (FCA) is calculated
according to Eq. (1):

FCAp ¼
Pt0

t¼t0�taQ
t
obsPt0

t¼t0�taQ
t
calc

ð1Þ

where Qobs and Qcalc are observed and calculated stream-
flow; t is the time step; t0 is the time at which forecasts
are issued, and ta defines a period over which averages
are calculated. The value of t0 � ta may be one day, but
since observed streamflow measurements have noise,
obtaining the correction factor FCA using just one day of
observations can give rise to fluctuations and instability in
the updating process. The value of ta should therefore be
set to two or more days when streamflow measurements
are noisy, as in the case of daily observations in rivers sub-
ject to reservoir regulation. After the FCA value for gauge p
is calculated, discharge from each cell upstream of the
gauge is updated according to Eq. (2):

Q upi;k
¼ FCAk � Q calci

� Ai

Ak

� �
þ Q calci

� 1� Ai

Ak

� �
ð2Þ

where k is the gauge considered; Q upi;k
is the updated value

of discharge at cell i, located upstream of gauge k; Ai is the
drainage area upstream of the ith cell and Ak is the drainage
area upstream of gauge k.

Eq. (2) shows that corrections to calculated discharge
are weighted according to the reliability of the information
at the streamgauge. At the cell where the streamgauge is
located, observed flows are used in place of calculated
ones, and for cells close to it, the scheme assumes that flow
recorded at the streamgauge is virtually correct. For cells
far upstream of the gauge, however, calculated flows are
assumed to be more reliable, and corrections are damped
out by use of the equation.

The updating procedure described above refers to dis-
charge, and a similar procedure is adopted to correct vol-
umes in groundwater storage. Each cell of the model has
three linear reservoirs representing the retention and de-
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lay of water subsequently released as surface, sub-surface
and groundwater flow. Outflow from these reservoirs in
each cell becomes inflow to the river network and is rou-
ted using the Muskingun–Cunge method (Collischonn
et al., 2007). During long dry periods, the greater part of
flow comes from groundwater storage. The model main-
tains a continuous record of the fraction of flow in the
drainage network that comes from surface, sub-surface
and groundwater. Groundwater storage in each cell up-
stream of streamgauge k is updated using the same correc-
tion factor (FCA) used for river flow, but unlike discharge,
groundwater storage updating is not weighted by drainage
area relations between cell and gauging point, but by the
fraction of river flow that is of groundwater origin (PBi),
according to (3)

VBupi ¼ ðFCAkÞbx � VBi � ðPBiÞ þ VBi � ð1� PBiÞ ð3Þ

where VBupi is the updated storage in the groundwater res-
ervoir of cell i; VBi is the calculated storage at cell i; PBi
is the fraction of river flow at cell i that originated from
groundwater, and bx is an updating parameter with values
between 0 and 1. When bx is close to 1, groundwater updat-
ing is relatively rapid; when bx is close to 0, the correction
is somewhat smoothed, therefore taking longer to make the
necessary corrections. On the other hand, smaller values of
this parameter lead to more stable results, since real-time
observed streamflow values may have random errors that
would, otherwise, result in overcorrection. The influence
of this parameter was briefly tested and bx was set to 0.2
(Paz et al., 2007).

The updating technique described here is empirical and
is under continual development for further applications. In
some respects, the proposed dependence of correction
weighting with drainage area is similar to the pre-defined
gain functions used by Madsen and Skotner (2005).

Precipitation forecasts

The QPF forecasts were provided by the Eta Model described
by Mesinger et al. (1988) andBlack (1994). This is a grid-
point model and was configured to run over a domain that
covers most of South America and parts of adjacent oceans
(Chou, 1996). The model has been used for short-range
weather forecasts by CPTEC on an operational basis since
1996. One of the major features of the model is the vertical
g coordinate defined by Mesinger (1984). Near mountainous
regions, this coordinate stays approximately horizontal,
which reduces errors from calculations of horizontal deriva-
tives in those regions. The model variables are distributed
on the Eta-grid. The time scheme uses forward–backward
scheme for the adjustment terms, and first-forward-then-
centered for the advection terms.

The model was configured with horizontal resolution of
40 km and 38 vertical layers. Highest vertical resolution is
near the surface, where the first model layer thickness is
20 m. Resolution decreases with height, except near the
tropopause where a secondary maximum of vertical resolu-
tion occurs. The model has about 13 levels within the con-
vective layer. The top of the model is at 25 h Pa. In the
vertical, the variables are distributed in a Lorenz type of
grid (Chou, 1996).

The model’s estimate of total precipitation is the sum of
convective and stratiform precipitation; the former is given
by the Betts–Miller scheme (Betts and Miller, 1986) and the
latter uses the Zhao cloud scheme (Zhao and Carr, 1997).
Atmospheric turbulence is modeled by the Mellor–Yamada
2.5 scheme (Mellor and Yamada, 1982) with forecasts of
turbulent kinetic energy. Exchanges between vegetation,
soil and atmosphere are modeled using the scheme pro-
posed by Chen et al. (1997) with two soil layers, 12 vegeta-
tion cover types and nine soil types. Model shortwave
radiation is treated by the Lacis and Hansen (1974) scheme,
and for longwave radiation the procedure proposed by Fels
and Schwarzkopf (1975) is used. Longwave and shortwave
fluxes are calculated every model hour. The initial condi-
tions were taken from NCEP daily global analyses with a res-
olution of about 100 km and 28 vertical layers. The lateral
boundary conditions were taken from the CPTEC global
model (Bonatti, 1996) forecasts at a horizontal resolution
of approximately 100 km. These boundaries were updated
every 6 h.

Ten-day Eta forecasts were produced for the period from
1996 to 2003. The runs started at 1200 UTC every Wednes-
day, to fit the ONS weekly operational procedures. Variables
forecast by the Eta model, such as precipitation, were out-
put every 6 h on 0.4 · 0.4 latitude–longitude grid.

Precipitation forecasts given by the Eta model over South
America have been shown to be useful for short-period
weather forecasts (Chou and Justi da Silva, 1999; Busta-
mante et al., 1999), extended forecasts (Chou et al.,
2000; Chou et al., 2002) and seasonal forecasts (Chou
et al., 2005). The precipitation forecasts tend to overesti-
mate at lower rates and to underestimate at heavier rates.
In the central part of the continent, a small underestimate
is generally found (Chou and Justi da Silva, 1999). In the
evaluation performed by Bustamante et al. (1999) precipita-
tion forecasts tended to show larger bias at the initial fore-
cast hours; however, at about 36 h and 48 h, precipitation
forecasts tended to reduce the initial bias. In a comparison
study carried out by Gonçalves et al. (2006), in general, the
Eta model precipitation forecasts outperformed the remo-
tely sensed precipitation products in South America. In ex-
tended- and seasonal-range forecasts, the model exhibits
clear positive systematic bias along the northeastern coast
of Brazil and southern part of Chile (Chou et al., 2000; Chou
et al., 2002; Chou et al., 2005).

Description of the study basin and data

The Paranaiba River is one of the main rivers of the Parana
river basin, which contains 60% of the Brazilian hydropower
production capacity. The Paranaiba drains the central re-
gion of Brazil where altitude is between 1200 and 400 m.
The study reported in this paper concentrated on the sub-
basin of the Paranaı́ba between the two major hydropower
plants Itumbiara and São Simão. The incremental drainage
area between the two dams is 76,746 km2 with five major
tributaries: Prata and Tijuco from the left bank and Meia-
Ponte, Bois and Preto from the right. Time of concentration
for the incremental basin is between 1 and 2 days.

Annual rainfall is close to 1500 mm and is concentrated in
summer from November to March. Soils are relatively deep
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and the natural vegetation of forests and cerrado (Eiten,
1972), a savanna-like vegetation, has been almost com-
pletely replaced by agriculture and pasture (Fig. 1).

The model MGB-IPH was applied with the basin divided
into cells of 6 · 6 min of latitude and longitude, and consid-
ering six different GRUs, according to Table 1. Soils where
classified as deep or shallow and were combined with vege-
tation or land-use characteristics to define the GRUs. The
most important GRU in the basin is Agriculture over deep
soils, which covers almost 60% of the basin.

Hydrological records provided by ONS consisted of data
from 26 daily raingauges and 10 daily streamgauges. Two
time series of inflow to the Sao Simão reservoir were pro-
vided: one representing overall inflow to the reservoir and
the other representing just the fraction generated in the
incremental basin, defined as the area between São Simão
and Itumbiara upstream. The objective was to obtain fore-
casts of inflow contribution from the incremental basin,
termed incremental inflow. Incremental inflow is not actu-
ally observed, but is calculated from water budgets of the
downstream reservoir minus water releases from the up-
stream reservoir in monthly time-steps. Daily incremental
inflow values are then obtained by distributing the monthly
volume according to the shape of the daily hydrograph of

the most important tributary. Consequently, the observed
incremental inflow is actually a result of a series of transfor-
mations of data from reservoir water budgets and observed
discharges at stream gauges, all of them subject to error.
The reason for focussing on incremental inflows is that the
operation of the whole system of reservoirs is operationally
managed based on optimization methods that use forecasts
of incremental inflows.

Average incremental inflow is 960 m3 s�1 which is nearly
40% of the total inflow to the downstream reservoir São

Figure 1 The Paranaiba basin showing the location of raingauges, stream gauges and the Itumbiara and São Simão dams.

Table 1 Grouped response units considered in the hydro-
logic discretization of the basin

GRU Fraction of the basin (%)

Cerrado SS 5.7
Cerrado DS 9.2
Agriculture DS 59.3
Agriculture MS 20.1
Agriculture SS 4.4
Water 1.3

SS: shallow soils; DS: deep soils; MS: medium deep soils.
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Simão. Maximum incremental inflow occurred in 1982 with
6200 m3 s�1, and values close to the minimum occur every
year in August or September, with values commonly in the
range 300–400 m3 s�1.

Data on surface temperature, wind velocity, air mois-
ture, hours of sunshine, and atmospheric pressure were ob-
tained from seven meteorological stations operated by
INMET (National Institute of Meteorology). QPFs were ob-
tained from the Eta CPTEC model as explained above, with
a spatial resolution of 0.4 · 0.4�. Precipitation forecasts
were interpolated to the 6 · 6 min resolution of the hydro-
logical model, using inverse-distance-squared weighting.
Observed and forecast precipitations were available for dai-
ly time-steps while other meteorological data were avail-
able only as mean monthly values. Precipitation and
meteorological data were interpolated to the MGB-IPH mod-
el grid using inverse-distance-squared weighting.

Model calibration

Calibration of the model is in three stages: first guesses,
manual fitting, and automatic multi-objective calibration.
First estimates of parameter values come from physical con-
siderations and prior applications in similar basins or basins
nearby. The second step is to improve model results by man-
ual calibration of the parameters. This normally consists of
a trial-and-error procedure, using visual comparison of ob-
served and calculated hydrographs of single rainfall–runoff
events and of the whole annual hydrograph. If the overall
volume of runoff obtained from calculated and observed
hydrographs is in reasonable agreement, and if calculated
streamflow during peaks and recessions is of the same order
of magnitude as that observed, the manual calibration
phase is complete. This phase is based on visual comparison
and statistics and objective functions are not evaluated.
During the third and final phase, the MOCOM-UA (Yapo
et al., 1998) algorithm is used to obtain the final calibration,
based on a priori defined ranges of parameter values, and
considering three objective functions: the Nash–Sutcliffe
coefficient of efficiency (NS); the Nash–Sutcliffe coefficient
of efficiency of logarithms of streamflow (NSlog); and rela-

tive volume errors (DV). The MOCOM-UA algorithm was ap-
plied using a population of 100 parameter sets and the
final solution was chosen arbitrarily between the three with
best NS coefficients.

Parameters are related to GRUs and in usual applications
of the model the same parameter values are adopted for
each GRU, regardless of where it lies within the basin (Col-
lischonn et al., 2007). However for forecasting applications
the calibration is repeated for each sub-basin, so that dif-
ferent parameter values for the same GRU may be found
for different sub-basins. This means that physical meaning
of the relation between land-use and soil classes and model
parameters is somewhat sacrificed in order to get better re-
sults at the sub-basin outfall.

The model was calibrated using data from 1991 to 2001
and verified using data from 1981 to 1990. Table 2 shows
the results at each gauging station and for the estimated
incremental inflow to the São Simão dam (last line in Table
2). Larger basins give better results, and Nash–Sutcliffe
coefficients are very similar for calibration and verification
periods.

Configuration of forecasting tests and method
used to evaluate model efficiency

Successive forecasts were made every week, starting on
Wednesday, and extending for 10 days up to Friday of the
week following. For each forecast the hydrological model
was run with observed rainfall data during a warm-up period
that lasted a few months, extending from the middle of the
dry season (July) of the preceding year up to the Tuesday
preceding the forecast period. Calculated and observed dis-
charge values were compared at several sites, and the
updating procedure was applied each day during this warm-
ing up period. Forecasts were compared with observed
incremental inflows and with forecasts obtained from the
model in current operational use, known as PREVIVAZ (CE-
PEL, 2004; Maceira et al., 1997).

PREVIVAZ is a program that uses several different config-
urations of ARMA(p,q) and Periodic ARMA models, with val-
ues for p in the range 1 to 4 and q not larger than 1, possibly

Table 2 Model results during calibration and verification

River Gauging station Area (km2) Calibr. (1991–2001) Verific. (1981–1990)

NS NS log DV NS NSlog DV

Meia Ponte Ponte Meia Ponte 11483 0.80 0.84 4.8 0.83 0.88 �10.7
Meia Ponte Ponte Go-206 12256 0.79 0.84 �1.5 NA NA NA
Dos Bois Fazenda Boa Vista 4569 0.62 0.69 13.8 0.68 0.82 0.0
Turvo Faz. Nova do Turvo 2436 0.63 0.74 8.1 0.68 0.78 �16.4
Verde Ponte Rio Verdão 8651 0.80 0.85 6.2 0.80 0.81 �6.7
Dos Bois Abaixo B. R. Verde 30491 0.87 0.90 1.8 0.91 0.94 �6.3
Preto Quirinópolis 1657 0.58 0.53 �5.7 0.44 0.45 10.6
Prata Ponte do Prata 5266 0.72 0.84 1.3 0.76 0.82 0.3
Tijuco Ituiutaba 6383 0.74 0.78 �10.0 0.78 0.79 7.1
Tijuco Cach. do Gambá 6998 0.64 0.68 �9.0 0.80 0.84 1.0
Paranaı́ba São Simão (increm.) 76746 0.90 0.89 0.6 0.92 0.90 �1.9
The Nash–Sutcliffe coefficient of efficiency (NS); the Nash–Sutcliffe coefficient of efficiency of logarithms of streamflow (NSlog); and
relative volume errors (DV) expressed in percentage terms.
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with Box–Cox transformation of streamflow values (CEPEL,
2004). Different configurations of the model are tested
every week before the forecast is issued, so as to identify
the best amongst all the possible model configurations.
The historical record is therefore divided into two halves,
and for each week, the parameters of every model in the
set are estimated using data from the first half, after which
Root-Mean-Square Errors (RMSEs) are calculated using the
second half of the record. The procedure is then reversed:
PREVIVAZ estimates the parameters for every model for
each week of the second half of the record, with RMSEs cal-
culated using data from the first half. The average of the
two RMSEs, from the two halves of the record, is then calcu-
lated for each possible model and that model is selected for
which this average is smallest. After this selection proce-
dure, PREVIVAZ once again estimates the parameters, this
time using the full record, and the whole procedure is re-
peated each week; rainfall, whether observed or forecast,
is not used.

Results

Results are presented in both fixed-origin and fixed lead-
time form (Bell and Moore, 1998). Fixed-origin presentation
shows forecasts issued in one day, with lead-times from one
to 10 days, extending up to the forecasting horizon; fore-
casts are therefore compared that were issued on different
days, but with the same lead-time. Fixed-origin forecasts
are presented as hydrographs of daily streamflows which
partly overlap because (in the work reported here) they
are issued each Wednesday, and are extend to 12 days,
i.e., two days beyond the range of rainfall forecasts.

Fig. 2a shows successive forecasts issued every Wednes-
day during the 2002 summer (wet season) compared with
the observed hydrograph. To analyze whether the errors
arise from incorrect rainfall forecasts or from other sources,
Fig. 2b shows forecasts for the same periods that were ob-
tained using observed rainfall. It can be seen that some of
the errors are clearly related to poor rainfall forecasts; sur-
prisingly, however, the flow peak of late February is more
seriously overestimated when observed rainfall was used.
This may be related to the density of the rain gauge network
used to estimate observed rainfall, which is much lower
than gauge densities recommended by WMO (1994).

The analysis for the summer of 2002 shown in Fig. 2 was
repeated for every week from January 2002 to December
2003 (103 weeks in all). To assess the decline in forecasts
quality with increasing leading time, the NS coefficient of
efficiency was calculated for both flow forecasts based on
QPFs and for forecasts based on observed rainfall, for
lead-times from 1 to 12 days. Results are shown in Table 3.

It can be seen that performance of forecasts decreases in
both cases, and that the decline is greater where forecasts
are calculated from QPFs. From days 7 to 12, the NS effi-
ciencies remain relatively stable around 0.92 to 0.94 in
the case of observed rainfall, and about 0.83 in the case
of forecast rainfall. High values of the coefficient for short
leading times are due to the updating procedure used by the
model.

The positive effect of model updating on the results can
be evaluated by comparing model efficiencies for short

lead-times (Table 3) with model efficiencies during calibra-
tion and verification of the hydrological model (Table 2).
During calibration and verification, the calculated NS effi-
ciency was close to 0.90, while during the forecasting tests
its value was as high as 0.98, on the first day of forecast,
when observed rainfall was used as input.

Figure 2 Successive forecasts issued every Wednesday during
the summer of 2002: (a) forecast rainfall; (b) observed rainfall.

Table 3 Nash–Sutcliffe (NS) efficiency coefficients for
incremental inflow forecasts at São Simão based on forecast
and observed rainfall, for lead-times extending to 12 days

Lead-time (days) NS obs NS prev

1 0.98 0.97
2 0.97 0.96
3 0.94 0.94
4 0.94 0.91
5 0.95 0.89
6 0.95 0.86
7 0.94 0.82
8 0.95 0.83
9 0.94 0.86
10 0.92 0.84
11 0.92 0.83
12 0.94 0.83

‘NS obs’ shows the NS efficiency when observed rainfall is used;
‘NS prev’ gives the NS efficiency using rainfall forecasts from the
Eta model.
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A particularly important analysis is that of weekly aver-
age flows. Seven-day averages of incremental inflow, ob-
tained from the MGB-IPH model using input from QPFs,
were compared with forecasts obtained by the PREVIVAZ
ARMA-type model currently in use. Fig. 3 presents hydro-
graphs of observed and predicted weekly average flows from
the end of the dry season of 2002 to the end of the wet sea-
son (April) of 2003. Fig. 3 shows a graph of fixed lead-time,
since the points in the hydrograph correspond to streamflow
forecasts issued with lead-time of one week.

It can be seen that forecasts obtained by the MGB-IPH
model are closer to observed streamflow in most cases,
especially for the three first weeks of the period, which cor-
respond to the end of the recession of the dry season, and
for the rising parts of the hydrograph. The ARMA forecasts
show a clear pattern of a one week delay with maximum
and minimum values postponed by one week, which is a con-
sequence of the model structure. The value of including
new information given by rainfall forecasts can be seen dur-
ing periods when the hydrograph is rising and during sharp
changes in inflow when the hydrograph may increase or
decrease.

Fig. 4 compares observed and forecast inflows consider-
ing both the MGB-IPH hydrological model with input from
QPFs and the currently used PREVIVAZ ARMA-type model
during two years (2002 and 2003). It can be seen that for
low flows both forecasting models perform relatively well,
with points representing the MGB-IPH forecasts rather clo-
ser to the line of perfect forecasts. For flows larger than
800 m3 s�1 points are considerably more dispersed with a
clear pattern of larger dispersion for the ARMA model.

Several error analyses compared forecasts obtained with
the MGB-IPH model with QPF inputs with forecasts obtained
from the ARMA model. The results are given in Table 4,
showing that the MGB model performed better in all cases.
The reduction of average absolute errors (ABE) is of the or-
der of 34% and the improvement in other statistics is simi-
lar. It is not possible to say at present whether this
improvement results in better decisions in reservoir opera-

Figure 3 Hydrographs of observed and predicted weekly
averages of inflow from October 2002 to April 2003.

Figure 4 Scatterplot of observed versus predicted inflows
using the MGB-IPH model with rainfall forecasts and the ARMA
model.

Table 4 Error statistics for seven-day average incremental inflow forecasts obtained with the MGB large-scale distributed model
using rainfall forecasts and forecasts obtained by the ARMA model for years 2002 and 2003

Statistic Statistic measure ARMA MGB + QPF

Average absolute error ABE 1

N

X
umN

i¼1jPi � Oij 170 113

Average relative error ARE 1

N

XN

i¼1
100 � jPi � Oij

Oi

16.1 10.8

Root mean square error RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðPi � OiÞ2

r
274 186

Nash–Sutcliffe efficiency NS
1�

PN
i¼1ðPi � OiÞ2PN
i¼1ðOi � OÞ2

0.76 0.89
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tion, however we expect that better forecasts will probably
lead to better decisions.

Conclusions

A methodology for forecasting streamflow based on both ob-
served rainfall and quantitative precipitation forecasts
(QPFs) obtained from numerical weather prediction models
has been presented, and tested, using a large-scale hydro-
logical model to estimate streamflow from rainfall. An
updating method used with the hydrological model, based
on observed streamflow at several stream gauges, has also
been presented.

The forecasts were tested over a two-year period on a
weekly basis, according to current operational practice,
for a segment of a river basin lying between two reservoirs
that form an important part of the Brazilian hydropower
generating system. Daily streamflow forecasts were issued
on Wednesday of each week and extended up on Sunday
of the week following, giving a 12-day lead-time; the fore-
casts of streamflow used rainfall forecasts for the first 10
days and assumed that no rain falls during the last two days
up to the 12-day forecasting horizon.

The quality of forecasts was first assessed by comparing
them with observed streamflow on a daily basis. For the first
four days the performance of forecasts was very good, with
Nash–Sutcliffe efficiencies remaining above 0.90. For days
6–12, this coefficient was stable around 0.83.

It has also been clearly shown that model updating has a
positive effect on forecast performance by raising the
Nash–Sutcliffe efficiency from 0.90 during model calibra-
tion to 0.98 during the forecast period, for one-day-ahead
forecasts using observed rainfall.

As expected, forecasts obtained using observed rainfall
are clearly better than forecasts obtained using QPFs.
Although QPFs are improving with time, they are still a long
way from being better than observations, even with the low
density raingauge network in the basin used for the study.
However, despite its better quality, observed rainfall can-
not be used to forecast streamflow operationally in the
medium-range period of several days, because the rain that
generates flow during the forecast horizon falls during the
period after streamflow forecasts are issued. QPFs must
therefore be used for operational forecasting, because they
are available at the time they are needed. Streamflow fore-
casts derived from observed rainfall were reported here
only for comparative purposes.

The most important result reported in this paper was gi-
ven by comparing forecasts of seven-day average discharge
with observed streamflow and with results from the ARMA-
forecasting model in current use, and which makes no use
of rainfall, whether observed or forecast. This comparison
shows clearly that the MGB-IPH model performed better
than the ARMA model, both in terms of error statistics and
of visual inspection of hydrographs and scatter plots.

It seems likely that for Brazilian conditions, streamflow
forecasts given by the MGB-IPH model when using rainfall
forecasts from the Eta Model run by CPTEC, can be further
improved by modifying the convective precipitation scheme
of the Eta model, and by improving the updating procedures
in the MGB-IPH. Better results would probably also follow
from denser instrument networks.

The use of ensembles of QPFs may also lead to improve-
ments in streamflow forecasts. Ensembles were not used in
the work reported here because they were not available; at
present, the optimization procedures routinely used by ONS
for reservoir operation assume the existence of a single
forecast trace extending to the forecast horizon. Whilst it
is possible that in the future ensembles of streamflow fore-
casts could be obtained by using ensembles of QPFs as input
data to the hydrological model, this would mean that either
(i) members of the ensemble of streamflow forecasts would
need to be averaged to give a single forecast trace, or (ii)
that the optimization procedure currently in use would need
to be adapted to use multiple traces.
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