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ABSTRACT

This paper describes a procedure for predicting seasonal flow in the Rio Uruguay

drainage basin (area 75000 km2 lying in Brazilian territory), using sequences of future daily

rainfall given by the global climate model of the Brazilian agency for climate  prediction

CPTEC-INPE. Sequences of future daily rainfall given by this model were used as input to

a rainfall-runoff model appropriate for large drainage basins. Retrospective forecasts of

flow in the R. Uruguay were made for the period 1995-2001 and were compared both with

observed flows and with simplistic forecasts using monthly mean or median flows obtained

from the historic record. Analysis showed that the global climate model underestimated

rainfall over almost all the basin, particularly in winter, although it reproduced inter-annual

variability in regional rainfall relatively well. A statistical procedure was used to correct for

the underestimation of rainfall. When the corrected rainfall sequences were transformed to

flow by the hydrologic model, forecasts of flow in the R. Uruguay basin were better than

forecasts based on historic mean or median flows by 37% for monthly flows, and by 54%

for  three-monthly flows.

INTRODUCTION

 Theory suggests that forecasts of river flow could be obtained by using forecasts

from weather- or climate-forecasting models as input to hydrologic rainfall-runoff models.

In practice, however, such forecasts have rarely been used operationally because models for

predicting weather and climate yield forecasts with relatively large errors, particularly for

rainfall. It is expected that recent and continuing developments in forecasting, both in terms

of model structure and related computational procedures, will yield quantitative estimates

of rainfall of wider use in water resource planning, especially at  larger scales.



With some exceptions, short-term forecasts of flow in rivers, over periods from a

few hours to several days,  have commonly been made using deterministic models that

described weather and hydrologic phenomena in the immediate future.  Forecasts over

longer periods, extending perhaps up to six months, have commonly used statistical

procedures that relate streamflow and/or rainfall to explanatory variables such as sea-

surface temperatures SST [Servain, 1991; Robertson and Mechoso, 1998; Diaz et al., 1998;

Uvo and Graham, 1998; Hamlet and Lettenmaier, 1999; Hastenrath et al., 1999]. However

developments in both the description of physical phenomena within the climate models

themselves, and in computing power, open up the possibility of forecasting seasonal flows

from physical principles.

The importance for Brazil of good estimates of future flow, with the concomitant

ability to predict inflows to reservoirs, can scarcely be overestimated.  The country´s

energy network is predominantly fed by hydropower, and good forecasts of future flow

would both ensure efficient reservoir operation and give a sound basis for costing future

power. In addition, prediction of water availability is important for irrigation, navigation,

and consumption by the country´s rapidly expanding cities.

However, to extend predictions of flow beyond the period of short-term basin

response requires forecasts of future rainfall. Whilst numerical models for weather

prediction give estimates of future rainfall for several hours, and climate prediction models

yield rainfall sequences extending up to several months, rainfall prediction remains one of

the most difficult variables to forecast in quantitative terms, although important advances in

this difficult field have been reported [Mao et al., 2000; Collier and Krzysztofowicz, 2000;

Damrath et al., 2000; Golding, 2000]. The combination of quantitative predictions of

weather and climate, with hydrologic models has also been the subject of recent research



[Galvão, 1999; Araújo Filho and Moura, 2000; Hamlet and Lettenmaier, 1999; Ibbitt et

al., 2000; Kite, 1997; Kite and Haberlandt, 1999; Yates et al., 2000; Yu et al., 1999; Wood

et al., 2002].

The benefits resulting from flow forecasts have also been widely studied. Where

hydropower is generated, the benefits of prior knowledge of reservoir inflows, even when

knowledge is incomplete, are that (1) spillage is minimized; (2) reservoirs can operate with

greater head of water for longer periods;  and (3) more energy can be generated at times

when energy prices are higher [Faber and Stedinger, 2001; Yeh et al., 1982; Hamlet et al.,

2002]. And since, in mixed generating systems, the operational costs of hydropower

production are lower than for thermo-electric and other generating systems, there is a strong

economic motive for maximizing the proportion  of energy generated from hydropower

[Hamlet et al. 2002]. One way of contributing to this maximization is to make use of

hydrologic forecasts when decisions are to be made concerning power production,

particularly where systems are mixed.

As one example,  Hamlet et al. [2002]  took as a case study the Columbia River

basin on the US west coast, with installed capacity for hydropower generation of

approximately 18.700 MW, and demonstrated that it was possible to increase hydropower

production to a value somewhere between 40 and 150 million dollars annually, by means of

an empirical method of hydrologic forecasting based on predictions of SST in the Pacific

Ocean and a hydrologic model of large basins [Hamlet and Lettenmaier, 1999].

The highly non-linear nature of meteorological processes causes uncertainty

wherever hydrologic forecasts are derived from rainfall sequences derived from predictive

models of weather or climate. Because of the non-linearities, predicted rainfall sequences

are strongly dependent on initial conditions [Lorenz, 1969]. To evaluate the uncertainty,



predictions are repeated with the initial conditions slightly perturbed, resulting in an

ensemble of predictions consisting of individual members [Toth and Kalnay, 1997]. Each

member of the ensemble is used to generate a flow sequence, and variability amongst the

set of predicted flows thus generated gives a measure of their uncertainty [Krzystofowicz,

2001].

Predictive models of weather and climate can operate at global or regional scales.

At the global scale, the spatial resolution is of the order of 100 to 200 km, whilst regional-

scale models have spatial resolutions of several dozen km (from less than 10 km up to 40

km) over continent-sized regions. This spatial scale does not correspond to that generally

used in rainfall-runoff models, where representations of hydrologic processes vary with

basin size, and according to the purposes for which models are applied, to the data

available, and to the precision needed. Thus models that are adequate for simulating small

basins are not in general appropriate for modeling large basins.

Earlier work [Collischonn and Tucci, 2001] has described a distributed hydrologic

model for use in large drainage basins, which has been used to simulate the hydrologic

behavior of the Taquari Antas River in the Brazilian State of Rio Grande do Sul, and of the

Taquari River, in Mato Grosso do Sul. The model was subsequently calibrated for the basin

of the Uruguay River [Collischonn and Tucci, 2002]. The present paper describes the use of

this model for forecasting flows in the Uruguay River from 3 to 5 months ahead, using

forecasts of seasonal climate given by the global model of the Brazilian Center for Weather

and Climate Forecasting (CPTEC: Centro de Previsão de Tempo e Clima), which forms

part of the Brazilian Institute for Space Research (INPE: Instituto Nacional de Pesquisas

Espaciais).



THE URUGUAY RIVER BASIN.

The area of the Uruguay River basin considered in this paper (Figure 1) lies within

Brazilian territory extending to the frontier between Brazil and Argentina, between the

latitudes 26 and 29 S.  This drainage area of 75.000 km2 has marked relief and little soil

storage capacity, whilst aquifers linked to the drainage network exert little control over

flow. The climate is characterized by cool winters, little variation in seasonal rainfall, and

with annual rainfall varying between 1500 and 2000 mm.yr-1. The original forest vegetation

was extensively cleared during the twentieth century and most of the area is now used for

agriculture and cattle ranching.  The most important characteristics of relevance to this

paper are the small variation in flow of different seasons, the short “memory” of the

drainage basin, and the large variation in monthly flow about the historic monthly mean

and median values.

As a whole, the Uruguay River basin lies in the region of transition between the

Brazilian south-east with dry winters and wet summers, and the region of Uruguay marked

by wet winters and dry summers. There is therefore little seasonality in basin rainfall and

there is no well-defined wet or dry season.

FORECASTING METHODOLOGY

In this paper, a global circulation model was used to obtain seasonal rainfall

forecasts, and a large-basin rainfall-runoff model converted the rainfall predictions into

predictions of runoff.  The rainfall-runoff model described in previous papers [Collischonn

and Tucci, 2001; Collischonn and Tucci, 2002], used a discrete network of points derived

from a grid with squares 0.1 x 0.1 degrees of latitude and longitude, corresponding to about

10 x 10 km. This grid spacing was determined by considerations of soil type and other



physiographic factors. The model was calibrated using recorded rainfall as described earlier

[Collischonn and Tucci, 2002].

Having fitted the model using observed rainfall, it was then adapted to receive

rainfall sequences derived from the model giving estimates of future seasonal rainfall, so

that both models were used together to give medium-term flow forecasts.

THE HIDROLOGIC MODEL

Collischonn and Tucci [2001] described a distributed hydrologic model for use in

large drainage basins, which uses information from satellite images, digital elevation

models and digitized maps of land use, vegetation cover, relief and soils. The model uses a

daily time step and is similar to the LARSIM [Bremicker, 1998] and VIC-2L [Liang et al.,

1994; Nijssen et al., 1997] models. The basin area is discretized in square cells, which are

further divided into blocks according to the combination of soils, land use and vegetation

cover.

Soil water balance is computed independently for each block of each cell,

considering only one soil layer. Processes of flow routing and storage that are included in

the model are canopy interception, evapotranspiration, infiltration, surface runoff,

subsurface flow, baseflow and soil water storage.

Evapotranspiration from the soil, vegetation and the canopy to the atmosphere is

estimated through the Penman – Monteith equation as described by Wigmosta et al. [1994].

Streamflow is propagated thorugh the river network using the Muskingum – Cunge method

with time steps less than one day, according to the stream reach length and slope. Within

each cell the flow is propagated using three linear reservoirs (baseflow, sub-surface flow

and surface flow).



The model is calibrated using rainfall and  meteorologic data from gauging stations

within the basin. Values are interpolated spatially, and at each time step, to give an estimate

at the center of each grid cell, using the inverse-distance-squared interpolation method.

Some parameters, such as the Leaf Area Index, are not used in calibration, but are given

fixed  values determined from the literature;  seasonal variation may be included.

The Uruguay River basin was discretized into 681 cells 0.1 x 0.1 degrees wide, and

the model was calibrated using streamflow and rainfall data from 1985 to 1995 and verified

with data from 1977 to 1985. A multi-objective calibration method based on a genetic

algorithm [Yapo et al., 1998] was used to calibrate the model parameters in each block

defined by soil type, land use and vegetation cover. Data from five gauging stations within

the  basin were used simultaneously for  model calibration.

Results of the model calibration in the Uruguay River basin were very good, with

Nash-Sutcliffe efficiency criterion of 0.91 at the Iraí gauging station (area = 62200 km2)

during the verification period. Figure 2 shows the observed and calculated hydrographs at

the Passo Caxambu (area = 52671 km2) gauging station during 1994, where it can be seen

that the floods in the Uruguay basin occur rapidly and in any season. The hydrologic model

results were verified against observed data on 20 flow gauging stations of the River

Uruguay and for the larger tributaries the goodness of fit was only slightly worse during the

verification period than during the calibration period.

THE CPTEC-INPE GLOBAL CIRCULATION MODEL

The CPTEC climate spectral model is essentially a low-resolution weather

prediction model with equivalent  grid spacing of about 180 km with 28 vertical levels

between the surface and the top of the model atmosphere at 1 mb  The model is based on



the FORTRAN code used by the Center for Ocean and Land Studies (COLA) which is

described in Marengo et al. [2002]. It predicts five variables: zonal and meridional

windspeed, virtual temperature (i. e., allowing for water vapor effects on air density),

specific humidity and surface pressure. Vertical motion is obtained from the  the continuity

equation and knowledge of wind divergence. Derivatives in the horizontal are calculated

using the spectral method which represents each variable as a sum of spherical harmonics.

A run simulating one month takes about 35 minutes on a parallel-processing (NEC-SX4)

computer.

The model includes the following diabatic effects: water vapor condensation, short-

and long-wave radiation processes, turbulent exchange of heat, momentum and water vapor

between the surface and atmosphere, and turbulent transport of  heat, momentum and water

vapor within the atmosphere.

The effects of heat exchange in evaporation-condensation processes are included at

two scales: (a) at the grid scale, as a procedure which evaluates the degree of

supersaturation at the grid-point and the condensation of supersaturated vapor, eventually

removed as precipitation; and (b) at the sub-grid scale, in which cumulus-type clouds that

build up at scales ranging from a few kilometers to a few dozen km. For this second case,

the CPTEC model uses the widely-tested and validated Kuo parameterization [Kuo, 1974],

which takes the quantity of rainfall to be proportional to the moisture convergence at the

cloud base, as determined by local thermodynamic criteria.  The vertical heat profile

associated with the phase change from water vapor to precipitation is determined by the

temperature difference between a volume of air which rises without mixing with the air

surrounding it.



Short- and long-wave radiation processes are modeled so as to describe the effects

of short-wave  absorption in the main bands for water vapor, ozone, and oxygen. Molecular

scattering processes resulting from solar radiation are included, but aerosol scattering  is

not, since the aerosol concentration is a variable that is neither predicted nor diagnosed.

Cloudiness is represented simplistically but realistically, so as to allow an interaction

between radiation and the convective processes as parameterized at both grid- and sub-grid

scales. In the long-wave case, effects associated with the absorption and emission of

radiative energy are modeled for the water vapor, CO2 and O3 bands. The presence of

cloud is also considered, on the hypothesis that clouds behave as black bodies when their

thickness exceeds a certain critical value.

An important component of the CPTEC model is the procedure used to to simulate

the exchanges of heat, momentum and water vapor from the continental surface. The

CPTEC model uses the SImplified Biophere SIB2 procedure [Sellers et al., 1996], modified

by Rocha et al. (1996) in which the role of vegetation is represented as a resistance to water

vapor transport from the soil, through the root matrix, to leaf-surfaces, and then from leaf

surfaces to the atmosphere through the stomata. In addition, processes of radiative transfer

in the vegetation canopy, and interception of rainfall by the canopy (from which it later

evaporates) are also modeled realistically. The SIB2 parameters were duly calibrated using

data representative of Brazilian grassland and forests [Rocha et al., 1996], so that surface

processes are realistically modeled. This is an important characteristic of the CPTEC model

which makes it particularly relevant for studies of climate variability in South America, and

for regional climate forecasting.

In the oceans, exchanges of heat, momentum and water vapor depend on sea surface

temperature (SST). CPTEC uses two methods for incorporating SST data into the



atmospheric model during the period of integration:  (a) as persistent anomalies in SST in

all the oceans; and (b) as the SST predicted by the National Centers for Environmental

Prediction - NCEP in the Equatorial Pacific and SST as predicted by a statistical model

(SIMOC) for the Tropical Atlantic [Pezzi et al., 2001].. In areas other than the Atlantic and

Pacific tropical areas, and in the Indian and other oceans, the SST is given by assuming that

the anomaly observed at the begining of the integration period persists throughout. The two

procedures are necessary because the CPTEC model is not coupled to a model of oceanic

behavior.  They are also important for testing the influence of SST anomalies which have

significant impacts on climate anomalies observed in other parts of the globe. In particular,

SST anomalies in the Equatorial Pacific exert important controls on climate in southern

Brazil, by means of the el Niño/la Niña phenomena [Grimm et al., 1998].

Because of the chaotic nature of the dynamics of atmospheric evolution,

intrinsically associated with system non-linearity, the CPTEC model produces ensemble

forecasts [Toth and Kalnay, 1997].  Between 20 and 30 forecasts are calculated, every

month, for the following six months,  beginning from different initial conditions  (days

from i=1 to i=20 or 30). Theese can be used to estimate the  degree of predictability (i.e.,

reliability) of numerical predictions. Theoretical studies confirm that the mean of the

ensemble gives better accuracy than do its individual members, and in some cases

“attractors” can be observed clearly, indicating preferential climatic regimes associated

with greater reliability of forecasts. In other cases,  members of the ensemble diverge

significantly, indicating little reliability of forecasts. Experience with the CPTEC model

shows that the six-month forecasts are more reliable for some regions of Brazil (the south,

the northern part of the Brazilian North-East, and the eastern part of Amazonia)  than for



others. In other regions the reliability of forecasts is low or moderate. [Marengo et al.

2002].

The forecasts produced by CPTEC as ensembles were available as computer files

showing the daily evolution of temperature, geopotential height of  standard pressure levels,

specific humidity, pressure reduced to sea-level, wind (zonal and meridional components),

and total daily rainfall.

RESULTS FROM PRECIPITATION FORECASTS.

The period of data extracted from files created by the CPTEC global model

extended from December 1995 to February 2002. Data from this period were put into a

form appropriate for input and interpolation by the rainfall-runoff model.

The extracted rainfall data correspond to an ensemble  of 4 or 5 runs by the climate

model, each with a three-month duration. Each run corresponds to a forecast with given

boundary and initial conditions. A set of runs is needed because of uncertainties in the

initial conditions, to which climate models are particularly sensitive. The uncertainties arise

because  the relevant meteorological variables and sea-surface temperatures are determined

by a sampling procedure, so that knowedge about them is incomplete. In consequence,

forecasts obtained with initial conditions determined from measurements made on any one

given day will in general be different from forecasts initiated from measurements taken the

day after.

The forecasts of rainfall available for study were the sets of forecasts each extending

over a three-month period, beginning on 1 December 1995 up to 28 February 2002. Each

set consisted of 4 or 5 realizations selected by cluster analysis from the 24 original

realizations given by the climate model, which best represented the variability in the



original set. The realizations were obtained using the meteorological conditions on

successive days to determine the inital conditions for each model run.

As a first step, the quality of the rainfall forecasts over the R. Uruguay basin was

analysed by comparing annual means of forecasts and of measured rainfall for the period

December 1995 to May 1999. Measured rainfall was interpolated spatially using data from

rain-gauge sites, and forecast rainfall was interpolated using the forecasts for each cell

given by the climate model. (Figure 3). The forecast rainfall corresponded to the mean of

the 4 or 5 realizations available for the period. Both interpolation procedures (for measured

rainfall, and for forecast rainfall) used weights equal to the inverse squares of the distances

from the five nearest points (rain-gauge sites, or cell centers, as appropriate). The grid

spacing used for both interpolation procedures was that used by the rainfall-runoff model,

0.1 x 0.1 degrees.

Figure 3 and 4 show the mean annual measured and predicted rainfall respectively

(the latter as the mean of the 4 or 5 realizations used) over the R. Uruguay basin.

Comparison of the two figures shows that climate-model forecasts underestimate rainfall

over almost the entire basin. Measured rainfall vary from 1500 mm in the east to 2600 mm

in the west; forecast rainfall, however, reaches at most 1700 mm in the north-east of the

basin. Figure 6, giving the rainfall errors (forecast minus observed), shows that this

difference is small in the eastern part of the basin, but much larger in the west.

Besides the spatial distribution of error, variability in rainfall throughout the year

was also poorly represented by the forecasting model. In general, winter rainfall over the

basin was underestimated, with dry winters forecast similar to those of the Brazilian south-

east, whereas in reality there is very little seasonal variation in rainfall with no marked wet

and dry seasons. As a result, river discharge calculated by using the rainfall-runoff model to



convert rainfall forecasts into runoff was particularly underestimated in July and August

(Figure 6).

The systematic errors in rainfall forecasts – underestimation in winter, and in the

west of the basin – may be associated with the low spatial resolution of the model (about

200 km). Much of the rainfall in winter and transitional seasons is associated with cyclones

which develop in northern Argentina, Paraguay and Uruguay and move towards the ocean

[Gan and Rao, 1991].  The spatial scale of these cyclones is of the order of a few hundred

kilometers, and their intensity is largely dependent on the latent heat released by rain

formation [Bonatti e Rao, 1987]  so that they are not well represented at the low resolution

of the climate model.

METHOD USED TO CORRECT RAINFALL FORECASTS

Despite the systematic difference between observed and predicted mean annual

rainfall, and between observed and predicted seasonal rainfall within the year, the inter-

annual variability was fairly well reproduced by the climate model. A method was therefore

used to reduce the systematic error in forecasts, whilst maintaining the inter-annual

structure of rainfall forecasts.

The method used to correct forecasts is based on a transformation of the marginal

probability distribution of daily rainfall. Statistical theory shows that any probability

density function can be transformed into any other, by first transforming it into a uniform

distribution, and then using an inverse transformation from the uniform distribution to the

distribution required. To use this procedure, cumulative frequency curves of observed and

predicted daily rainfall were calculated for each month and for each model grid-point. The



graph in Figure 8 shows the cumulative frequency curves for the month of January, and for

the cell at point 9 (see Figure 9).

These two curves were used to correct the forecasts of daily rainfall. The probability

P associated with each forecast rainfall is identified from the cumulative frequency curve

for the forecast values. The corresponding corrected forecast is then obtained as that value

associated with the same probability, P, in the cumulative frequency curve for measured

daily rainfall. Figure 7 gives an example. This procedure was used to correct each forecast

value of daily rainfall, treating each month and each grid-point separately: with 16 grid-

points and 12 months, a total of 16×12×2 = 384 cumulative frequency curves were

calculated.

RESULTS OF FLOW FORECASTS.

The initial analysis of forecast river flows used the forecasts obtained

retrospectively for the period 1995 to 2001. The method for correcting rainfall, described

above, used the data for the period 1995 to 1998. Thus the forecasts for 1995 to 1998 were

corrected a posteriori: that is, the correction was applied using the same data as were used

to calculate the cumulative frequency curves. This procedure was used only for purposes of

comparison, and could not be used under operational conditions. Next, the rainfall forecasts

were corrected a priori for the period 1999 to 2001: that is, the cumulative frequency

curves used for correcting predictions of daily rainfall had been obtained using data from

the preceding period, (1995 to 1998). This method of correction could therefore be used

operationally.



The resulting forecasts of runoff were compared with flows recorded at the Iraí

gauging station on the R. Uruguay, where the area drained is 62.200 km2. Figure 10 shows

the position of this gauging station within the basin.

Figure 11 shows flow forecasts for the period 1995-8 using uncorrected forecasts of

rainfall from the climate model. The figure shows that the forecast flow is almost always

less than the observed, especially in (austral) winter months. In addition, for some months

there is also great variation amongst flow forecasts resulting from the different climate-

model realizations (grey lines).

Flow forecasts for the same period, but with climate-model rainfall predictions

corrected by  the procedure described above, are shown in Figure 12. There is great

variation amongst the flows predicted for some months, notably February 1996 and April

1998. Figure 13 shows the mean of the monthly flow predictions given by the 4 or 5

realizations obtained from the climate model, together with monthly mean flows calculated

from the historic record.

Figure 13 clearly shows that there is a gain when flows are predicted using rainfall

predicted by the climate model. However, the predicted flows in this figure were obtained

by a posteriori correction of predicted rainfall: that is, after the rainfall actually observed in

the period was known. The benefit resulting form the use of clmate-model forecasts of

rainfall is therefore overestimated.

A fairer test was obtained using the period June 1999 to October 2001, using the

same procedure for correcting the predicted rainfall,  but with the cumulative frequency

curves calculated from the earlier period of record, 1995-8. Figure 14 shows the predicted

flows thus derived, using all available climate-model realizations.  Large variation amongst



predicted monthly flows is again evident, giving na indication of the uncertainty in the

forecasts.

Figure 15 shows the predicted flows from all realizations in the set in the form of a

shaded band determined by the maximum and minimum predictions for each month; the

fine line is the mean of the monthly predictions, and the thick line gives the observed

monthly flow. The shaded band in Fig. 13 is wide in most months, the difference between

maximum and minimum predicted flows being as much as 5000 m3.s-1 in some cases,

although in some months this difference falls to about 1000 m3.s-1. In general, however, the

uncertainty amongst the set of predicted monthly flows (as measured by the range of

predicted monthly flows) is less than the the difference between the maximum and

minimum monthly flows in the historic record, shown as broken lines in Fig. 13.

Figure 15 shows that the use of climate-model forecasts of rainfall to predict future

flows can reduce their uncertainty. The mean of the set of flow forecasts generally follows

the pattern of observed flows, especially in the wet period at the ned of the year 2000.

Moreover, in almost all months the observed flow lies within the uncertainty band defined

by the range of predicted flows.

A complication occurred because the period of data available for evaluating flow

forecasts coincided with the completion of two hydraulic works on the R. Uruguay.

Between 1999 and 2001, two reservoirs at Itá and Machadinho, both upstream of the river

gauging station at Iraí, were completed and began to fill. Flow into the Itá reservoir began

16 December 1999 and reached spill-way level by March 2000. The Machadinho reservoir

began to fill on 28 August 2001 and was completed on 2 October 2001. These two periods,

for which the observed flows are open to doubt, are marked in Figure 15. It is important to

note that in both periods, observed flow was less than predicted flow.



Figure 15 shows that the reduction in uncertainty is more evident over periods

extending three months ahead; observed flows were then within the uncertainty band for

forecasts,  except when the reservoir at Itá was filling.

In the Uruguay river basin, the uncertainty band derived from the historical record,

when defined by the limits between minimum and maximum flows recorded for each

month of the year, is very wide when compared to the uncertainty band of the forecasts. In

part,  this may be because flows were observed over a longer period (about 50 years)  than

the 4 or 5 members of the ensemble of forecasts. The two uncertainty bands may be better

compared if they are defined as intervals of plus or minus one standard devation about the

observed flows, and about the forecast flows, respectively. This result is shown in Figure

17, in which the reduction in uncertainty becomes less clear; the observed flows are outside

of the uncertainty band as often for observed flows as for forecast flows. However, for

almost all of the months when the observed flows were beyond the upper limit of its

uncertainty band, the forecast indicated correctly that greater flows could be expected.

To summarise, the results presented show that the potential exists for obtaining flow

forecasts for a period extending to several months ahead, by using seasonal climate

forecasts given by a global climate model. However since the flow forecasts required a

statistical correction to the global climate forecasts, it could be argued that the positive

results obtained are simply a consequence of that correction, and do not illustrate any merit

in the climate forecasts themselves.

To explore this possibility, an alternative analysis was undertaken which used no

statistical correction, but which compared the anomalies in observed and predicted flows.

The observed anomaly in a given month, for example August 2000, is the difference

between the observed mean flow for that month and the mean of the observed flows in all



those Augusts for which flow was predicted by the CPTEC model, divided by  the mean

observed flow in all the Augusts for which predictions were available (equation 1). Thus, a

month with positive (negative) anomaly has flow proportionally greater (less) than the

mean observed flow, calculated over the period for which predictions were obtained from

the climate model. Similarly, anomalies can be defined for the forecast series: the anomaly

for August 2000 then being the difference between the predicted flow for that month, and

the predicted flows available in all other Augusts for which predictions were made by the

CPTEC model, divided by  the mean of all available predicted flows for that month

(equation 2).

j

j

QMO

QMOQO
AO

−
= (1)

j

j

QMC

QMCQC
AP

−
= (2)

where AO is the observed anomaly; AP is the forecast anomaly; QC is the forecast

discharge; QO is the observed discharge; QMOj is the observed mean monthly discharge

for month j; and QMCj is the forecast mean monthly discharge for month j.

For example, the period for which the CPTEC global climate model gave forecasts

used in this study extended from December 1995 to December 2001. Over this period, the

mean value of the flows observed in the month of August was 2370 m3 s-1,  whilst the mean

of the flows predicted from the CPTEC model in the (six) Augusts, without any statistical

correction of rainfall, was 447 m3 s-1. In August 2000, the observed mean flow for the



month was 1247 m3s-1,   and the predicted mean flow, obtained using the predicted daily

rainfalls without any statistical correction, was  337 m3 s-1. The anomaly of observed flow

was therefore – 0.47, obtained as  (1247-2370)/2370 and the anomaly in predicted flow was

– 0.25, calculated as (337-447)/447. Thus the negative sign of the anomaly was adequately

predicted: that is, an August drier than normal was forecast, and this is what occurred.

However the magnitude of the anomaly that really occurred was greater  in absolute

magnitude than the predicted anomaly.

Predicted and observed anomalies were calculated for each month of the period

used in the analysis (from 1995 to 2001). Figure 18 shows the results obtained for monthly

flows, and Figure 19 shows the three-month moving averages calculated from these series.

In general, predicted and observed anomalies show similar behavior. The figure shows, for

example, that the anomaly sign in the relatively wet period in 1997 and 1998 were positive

(i.e., flow greater than “normal”), although their absolute magnitude was under-estimated.

On the other hand the dry period  1998-99 was forecast as a period of transition, which only

came to be forecast as dry at the end of 1999.

The forecasts of anomalies in flow are clearly not perfect. However they show that

at least a part of the inter-annual variation in flow in the R. Uruguay can be forecast using a

system that combines hydrologic simulation with seasonal climate forecasts. The analysis

of anomalies also shows that the good results obtained where forecast flows were derived

from statistically-corrected rainfall sequences were not simply a consequence of the

correction procedure.

As well as qualitative and graphical analyses, results were also analysed

quantitatively in terms of comparisons between predictions derived from climate-model



forecasts and predictions based on the simple use of long-term means calculated from the

historic record.

One measure of the value of predictions given by the climate model is the reduction

in variance achieved by their use, relative to the variance obtained where forecasts of

monthly flows are simply set equal to their mean values over the period of historic record.

This reduction in variance can be written
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where  n is the number of months or three-monthly periods,  QC is the forecast of

flow obtained by using the climate model, QM is the historic mean value for flow in

relevant month or three-month period, and  QO is the observed flow, as before. The value

of RV will be 1 (or 100%) if all the forecast flows QC are equal to observed flows,

corresponding to a perfect predicition; it will have a positive value if the forecasts obtained

by using the climate model are better than taking just the historic mean flows as predictions

of future flow, and RV will be negative if the converse is true.

For the period June 1999 to October 2001, the reduction in variance obtained by

using predictions derived from the climate model, with rainfall correction, is about 0.15, a

15% reduction in variance relative to the variance where historic mean flows were taken as

forecasts of future flows. If, over the same period, months are excluded for which observed

flows are questionable because the reservoirs Itá and Machadinho were filling (December

1999, January and February 2000; August and September  2001), the reduction in variance



rises to 37%. For this period, therefore, flow forecasts obtained using rainfall forecasts

given by the climate model are 37% better than simply taking historic monthly flows as

forecasts of future flow.

When the value of forecasts is assessed over three-monthly instead of monthly

periods, which can be regarded as more reasonable since the climate model gives forecasts

for three months ahead and energy generation planning has a seasonal horizon, the

reduction in variance rises to 54% when periods affected by the filling of the two reservoirs

are omitted.

CONCLUSIONS

The rainfall forecasts given by the CPTEC global climate model systematically

under-estimate rainfall in the R. Uruguay drainage basin. This conclusion confirms the

results of earlier research, that the model under-estimates rainfall in the southern part of

Brazil [Nobre et al., personal communication].

The geographical distribution of rainfall predicted by the CPTEC global climate

model is substantially different from the observed distribution of rainfall. Whilst rainfall

predicted by the model increases from west to east, the measured rainfall increases from

east to west. In the uplands that form the extreme eastern part of the basin, the mean error

in predicted rainfall is relatively small; however in the center and western part of the basin,

the accumulated error in annual total rainfall is very large,in some regions rising to more

than 1000 mm yr-1. In summary, the model predicts too little rain in the center and west of

the basin.

Although the CPTEC global climate model predicts inter-annual variability in

rainfall reasonably well, its prediction of seasonal rainfall within years is poor. The largest



errors are in (austral) winter rainfall, when model predictions systematically under-estimate

rainfall in the R. Uruguay basin. Evapotranspiration is least during this period, and mean

flows are consequently greater. Under-estimation of rainfall in this winter period therefore

has a profound effect on the results of hydrologic forecasts.

It was possible to reduce the systematic errors in rainfall predicted by the CPTEC

global climate model by using an empirical correction. The results obtained using this

correction show that the combination of corrected rainfalls obtained from the global climate

model, with a large-basin model of hydrologic response, reduced the variance of three-

month predicted flow by 54%, relative to forecasts in which predictions of future flow are

simply set equal to their historic mean values. When the time interval was one month

instead of three, the reduction in variance was 37%.

Even without the statistical correction  of rainfall, the  anomaly in observed flow in

each month (and also in each three-month period) was predicted reasonably well where the

rainfall predictions were used as input to the large-basin model of hydrologic response.

The forecasts of seasonal flow that result when rainfall predicted by the global

climate model is transformed into runoff by the large-basin hydrologic model, appear as

sets or ensembles of hydrographs. Thus the forecast of future flow is obtained together with

a measure of its uncertainty. Analysis shows that the range (maximum minus minimum) of

the ensemble values of flow predicted in each month give a band of uncertainty that is

narrower than the band of uncertainty given by the historic record.

At the present time, decisions concerning future operations of power supply systems

are frequently based on synthetic flow sequences generated by empirical stochastic models

of autoregressive, moving-average type; this is certainly true of Brazil which depends

heavily on hydropower generation.  This paper suggests that alternatives need to be



explored in which rainfall predictions given by models of global climate are routed through

physically-based models of hydrologic response; variability between members of the

ensemble of flow sequences gives a measure of the uncertainty in flow prediction.

Furthermore, the precision of flow predictions derived from combining rainfall predictions

with models of hydrologic response will increase in the future, as models of weather and

climate develop still further.
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Figure 1: The Uruguay river basin within Brazilian territory.

Figure 2: Observed and calculated hydrographs in the rio Uruguay, at Passo
Caxambu.



Figure 3: Cell centers for the CPTEC global climate model (large points) and rain-gauge

sites (small points) in the R. Uruguay Basin.

Figure 4: Mean annual measured rainfall in the R. Uruguay drainage basin, for period

December 1995-May 1999.

Figure 5: Mean annual forecast rainfall in the R. Uruguay drainage basin, for period

December 1995- May 1999.



Figure 6: Error in mean annual rainfall calculated from global climate model: means for

period December 1995 to May 1999, 4 or 5 realizations.

Figure 7: Observed and predicted monthly mean flows in the Uruguay River basin.



Figure 8: Cumulative frequency curves for measured and predicted rainfall at point 9, for

the month of January: curves calculated using measured and predicted daily rainfalls over

the period December 1995-May 1998. Continuous line corresponds to measured rainfall,

broken line to forecast rainfall.

Figure 9: Points in and around the R. Uruguay basin  for which the CPTEC model of global

climate gave rainfall forecasts ( points shown are the cell midpoints of the model).



Figure 10: Site of river gauging station Iraí, on the R. Uruguay.

Figure 11: Forecasts of flow in the R. Uruguay, based on uncorrected forecasts of rainfall

from the climate model (The 5 grey lines correspond to the 5 realizations).



Figure 12: Predicted flows in the R. Uruguay, after correcting for under-estimation of

rainfall in climate-model realizations. (the  5 grey lines correspond to 5 realizations given

by the climate model).



Figure 13: Predicted flows in the R. Uruguay (the broken line is the mean of 5 predictions

of monthly flow from climate-model realizations; the line connecting squares shows the

historic mean monthly flows).



Figure 14: Predicted flows in the R. Uruguay, based on a priori correction of rainfall

predicted by the climate model (the 5 grey lines correspond to 5 climate-model

realizations).



Figure 15: Range of predicted monthly flows (shaded band) compared with range of

observed monthly flows in the historic record (maxima and minima shown as broken lines).

The heavy black line shows observed flow.



Figure 16: Range of predicted three-monthly flows (shaded band) compared with range of

observed monthly flows in the historic record (maxima and minima shown as broken lines)

and with observed flows (dark line).



Figure 17: Range of predicted monthly flows (mean + standard deviation and mean –

standard deviation shown as continuos lines) compared with range of observed monthly

flows in the historic record (monthly mean + standard deviation and mean – standard

deviation shown as broken lines) and with observed flows (dark line).



Figure 18: Anomaly in observed monthly flow (continuous line) and in predicted monthly

flow (dotted line) : December 1995 to October 2001.



Figure 19: Three-month moving averages of observed monthly flows (continuous line) and

of predicted monthly flows (dotted line): December 1995 to October 2001.


